Links between multiplicity automata, observable operator models and predictive state representations: a unified learning framework

نویسندگان

  • Michael R. Thon
  • Herbert Jaeger
چکیده

Stochastic multiplicity automata (SMA) are weighted finite automata that generalize probabilistic automata. They have been used in the context of probabilistic grammatical inference. Observable operator models (OOMs) are a generalization of hidden Markov models, which in turn are models for discrete-valued stochastic processes and are used ubiquitously in the context of speech recognition and bio-sequence modeling. Predictive state representations (PSRs) extend OOMs to stochastic input-output systems and are employed in the context of agent modeling and planning. We present SMA, OOMs, and PSRs under the common framework of sequential systems, which are an algebraic characterization of multiplicity automata, and examine the precise relationships between them. Furthermore, we establish a unified approach to learning such models from data. Many of the learning algorithms that have been proposed can be understood as variations of this basic learning scheme, and several turn out to be closely related to each other, or even equivalent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Investigation on the Applicability of Observable Operator Models for Nonstationary Processes using Multiplicity Automata

Executive Summary Observable Operator Models (OOM) are statistical tools developed in the field of Machine Learning with the purpose of modelling certain classes of stochastic processes. They have been highly successful, both in terms of efficiency and accuracy of results, compared to the more widely-used Hidden Markov Models (HMM), when used on stationary symbol sequences. For symbol sequences...

متن کامل

Planning in POMDPs Using Multiplicity Automata

Planning and learning in Partially Observable MDPs (POMDPs) are among the most challenging tasks in both the AI and Operation Research communities. Although solutions to these problems are intractable in general, there might be special cases, such as structured POMDPs, which can be solved efficiently. A natural and possibly efficient way to represent a POMDP is through the predictive state repr...

متن کامل

Toward a Unified Framework for Inference of Hidden State under Partial Observability

While various techniques exist for learning in partially observable environments such as POMDPs, there has yet to emerge a unified theory that frames the problem in such a way as to explain the fundamental issues, tradeoffs, and approximations involved. This work is a first step in that direction, providing a unifying framework for hidden state inference in deterministic finite POMDPs. We prese...

متن کامل

Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs

Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...

متن کامل

Compressed Predictive States Efficient Learning and Planning with Compressed Predictive States

Predictive state representations (PSRs) offer an expressive framework for modelling partially observable systems. By compactly representing systems as functions of observable quantities, the PSR learning approach avoids using local-minima prone expectationmaximization and instead employs a globally optimal moment-based algorithm. Moreover, since PSRs do not require a predetermined latent state ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Machine Learning Research

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2015